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1. ABSTRACT 

Nonmonotonic reasoning is intended to apply specifically in 
situation where the initial information is incomplete. The most 
important property of traditional system is monotonicity, i.e. 
addition of new facts to the database or to the theory does not 
result in any previous fact being retracted. There does not 
exist any inconsistency between the old statements and newly 
added statements and is assume that situation do not change. 
But in real world problem situation changes and so many new 
assumptions are generated. A monotonic reasoning system 
cannot work efficiently in real life environments because 
information available is always incomplete. These problem 
can be solved using nonmonotonic reasoning. 
Nonmonotonic reasoning tend to be introduced proof 
theoretically and little attention is paid to their semantic 
characteristics or their computational tractability.  
I present a different approach for construction of consistent 
belief set using least fix point semantics, declarative semantics 
and procedural semantics. 
Keywords: Nonmonotonic Reasoning, Fixpoint, Disposition, 
Extended Herbrand Base, Resolution,least fix point semantics, 
declarative semantics and procedural semantics. 
 

2. INTRODUCTION 
Development of tractable form of nonmonotonic reasoning 
to generate belief set  from a database which is a 
combination of disposition and proposition. 
Classical logic was developed for mathematical 
formalisation of human reasoning. One of the major aspects 
of classical logic is its monotonicity property, which tells, 
if a formula P is derivable from a set of premises Q, then P 
is also derivable from each superset of Q. However, human 
commonsense is frequently nonmonotonic, i.e. in many 
cases conclusion, drawn on the basis of present knowledge, 
is given up in the light of further information. For instance, 
we know that birds can fly. Given the information that 
Tweety is a bird, we conclude that or common people will 
understand that Tweety flies. Now if we get further 
information about Tweety, it is not necessary that Tweety  
should fly  because or a variety of reasons that Tweety is a 
penguin,Tweety’swings are broken,Tweety is too weak to 
fly,Tweetyis in caged,  then we have to withdraw our 
previous conclusion and revise it by saying that Tweety 
doesn’t fly. Most importantly, this belief revision is done 
without invalidating any of our premises. This form of 
logic, that allows us to invalidate our old conclusions are 
called ‘Nonmonotonic’ logic and it’s more suitable in the 
field of commonsense reasoning than its monotonic 
counterpart. 

Non-monotonic reasoning systems are more complex than 
monotonic reasoning systems. Monotonic reasoning 
systems generally do not provide facilities for altering 
facts, deleting rules because it will have an adverse effect 
on the reasoning process.  

  
3. MCDERMOTT AND DOYLE APPROACH 

McDermott and Doyle [12, 13] proposed that, 
nonmonotonic logic (NML) must consider not only the 
classical derivability of formulas but also the consistency of 
formulas for drawing inferences. The concept can be 
explained with a simple example [5]:  
German typically drinks bear 
which can be syntactically represented as follows:  ∀. German(x) Λ MDrink_Beer (x) ⊃Drinks_Beer(x). 
i.e. if x is a German and it is consistent to assume that x 
drinks beer then x drinks beer. The modal operator ‘M’ is 
used to represent consistency. For any predicate p, Mp 
stands for ‘it is consistent to assume that p’ and it is defined 
as  

If p is not derivable from given premises then infer Mp. 
This ‘M’ operator bears the essence of nonmonotonicity.  
Based on this concept McDermott and Doyle illustrated the 
proof-theoretic procedure for constructing fixed point or 
belief set from a given set of premises.  
In Autoepistemic Logic (AEL) Moore [14], instead of 
considering the consistency of formulas, tried to formalise 
the reasoning of an ideal agent having both positive and 
negative  introspective capabilities. This means that the 
agent knows that he knows p, whenever he knows p and he 
knows that he doesn’t know p, whenever he doesn’t know 
p.  
In AEL the statement ‘German typically drinks beer’ is 
represented as,  ∀. German(x) Λ L Drinks_Beer(x) ⊃Drinks_Beer(x). 
Where, ‘L’ is read as “it’s believed that”. In other words M 
in NML is replaced by L in AEL. Based on this concept 
Moore also calculated the proof-theoretic fixpoint. 
 
3.1 Limitations of McDermott and Doyle approach 
McDermott and Doyle’s Nonmonotonic Logic does not 
fully capture the notion of consistency even though it is 
based on the modal operator M which denotes “is 
consistent”.  Consider the theory T4 has only one fixed 
point containing ¬p. But {¬Mp} is inconsistent as it does 
not have any fixed point. Adding Mp to any set of formulae 
renders the set inconsistent, so a set containing Mp cannot 
be a fixed point, but ¬p is not derivable with any other 
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assumptions besides Mp.For example, If the following 
assertions are introduced: the following fixed – point can 
be proved: If the following axiom is addedthen cannot be 
proven. It is seen that is consistent with a theory and it is 
false, that is, is not inconsistent with . So, Nonmonotonic 
Logic is inconsistent. 

 

4.DISPOSITION 
Definition 4.1: A disposition is a proposition that is 
preponderantly but not necessarily always true.  
The disposition are usually interpreted as ‘if p, then q’ for 
example  
the disposition ‘Birds fly’. 
 It is interpreted as  
   if x is a bird then x flies 
Formally this can be written as:  
( ) ∀x (usually) Fly(x) ←Bird(x). 
We characterize dispositions by means of two sets: (i). the 
usual set and (ii). the exception set. The usual set 
corresponding to a disposition consists of the elements that 
satisfy the isposition, i.e elements for which the disposition 
manifests itself. The exception set contains the elements for 
which the disposition doesn’t hold. These elements are the 
cause of nonmonotonicity. The rest of the literature for 
simplicity. This clause is to be called dispositional clause. 
 
4.1 Inference Rule for Dispositions:  
The modus ponens rule that is used in first order logic is 
also valid for dispositions. This inference rule is called 
dispositional modus ponens.  
Given the clauses  
1. (usually) Fly(x) ←Bird(x)  
and 2. Bird (Tweety)  
we get 3. (usually) Fly (Tweety). 
In the above example the clause 1 is a disposition. Next 
Bird (Tweety) (in 2.) is a ground atomic formula. Using 
dispositional modus ponens on these two formulas we get 
another disposition (usually) Fly (Tweety), which can be 
represented as Tweety Flies(d). This disposition doesn’t 
contain any free variable. Thus we refer to this kind of 
dispositions as dispositional ground atoms. Thus it’s 
evident that by dispositional modus ponens we get another 
disposition or more precisely a dispositional ground atom. 
This dispositional ground atom can be considered as 
dispositional fact, in analogy to the facts in predicate logic.  
 

5. PROPOSITION 
Propositional logic is the simplest logic_illustrates basic 
ideas using propositions 
P1 , Birds fly 
P2 , Today it is raining 
P3 , This automated reasoning course is boring Pi is an 
atom or atomic formula 
Each Pi can be either true or false but never both. 
The values true or false assigned to each proposition is 
called truth value of the proposition 
 

6. LIMITATION OF MONOTONIC SYSTEM 
Logic base system are monotonic in nature i.e.,  if a 
proposition is made which is true, it remains true under all 
circumstances. All theorems are proved by this 

methodology only but in real life world problem situations 
changes and new assumptions are generated. That all 
statements made do not necessary mean that they are 
correct under all circumstances. 
Whenever we make a statement, we do not make it in a ad 
hoc fashion. The statement is made by manipulating a set 
of beliefs. Experts predict, diagnose and perform majority 
of their mental activity by relying on their beliefs. It is 
possible that during the course of action, events may take 
place which can either enhance the beliefs or reduce the 
dependency on the beliefs already existing. 
This problem can be solved using non-monotonic 
reasoning. A monotonic reasoning system can not work 
effectively in real life environment because  

• Information available always incomplete 
• As process goes by, situations change and so are 

the solutions. 
• Default assumptions are made in order to reduce 

the search time and for quick  arrival of solutions. 
 

7.BASIC CONCEPTS OF NON-MONOTONIC REASONING 

SYSTEMS 
To understand this let us take an example , if we say that 
Rohini is a bird, the conclusion that is arrived at (default) is 
that Rohini can fly. But on the other hand, it is not 
necessary that Rohini should fly  becauseor a variety of 
reasons similar to those given below : 

• Rohini could be an Ostrich. 
• Rohini’s wings are broken. 
• Rohini is too weak to fly. 
• Rohini could be caged. 
• Rohini could be a dead bird etc. 

As one makes a statement like Rohini is a bird, people 
assume that it can fly. If another statement like Rohini in an 
ostrich , people retract the assumptions that were made. 
Lot of day to day activities involve such instances wherein 
assumptions that have been made are forced to be 
withdrawn by the occurrence of an event or by getting a 
new piece of information.  
Why do humans make such assumptions as done in Rohini 
example. The reason could be that they identify such 
statements with the most likely characteristics of the object 
under consideration. Based on the most likely 
characteristics one can make some statements like the 
following: 

• Indian Railway maintain punctuality. 
• Indian Airlines regularly operate their flights. 
• Letters are delivered in time. 
• Telephones are working properly and no cross-

talks. 
 

8.PREDICATE 
A relation that binds two atoms together for example Ram 
likes aeroplanes. Here like is predicate and two atoms Ram 
and aeroplanes. Symbolically predicate-like (Ram, 
aeroplane) 

9. FACTS 
A facts must start with a predicate ( which is an atom and 
ends with a fullstop.) 
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10.RULES 
A rules is a predicate expression that uses Logical 
implication (      ) to describe a Relationship among facts. 
For example  
       A=  {Fly(x) ← Bird(x), 
          Bird (Tweety) ← 
          Bird(x) ← Penguin(x),  
         Give _egg(x)← Bird(x)  
          Penguin (Fred) ←  
 
          Fly(x) ←Penguin(x), }  
 Here basically two facts  
1 .Bird (Tweety)  
2.  Penguin (Fred) 
 
 And four types of rules:-- 
1.   Bird(x) ←Penguin(x)  
2. Gives_egg(x)← Bird(x)                
3.    Fly(x) ← Penguin(x)  
4.     Fly(x) ← Bird(x) 
 

11.BELIEF SET : 
This is usually a set of beliefs which justify their action. 
Belief set = Proposition + Disposition 
Belief set is a subset of ground attom. 
 

12. HERBRAND’S APPROACH:- 
A very important approach to mechanical theorem proving 
was given by Herbrand in 1930.By definition; a valid 
formula is that is true under all interpretations. Herbrand 
developed an algorithm to find interpretations that can 
falsify a given formula, that is, instead of proving a formula 
is valid, they prove that the negation of the formula is 
inconsistent. 

 
13. RESOLUTION 

The resolution Principle is “Given any two clauses A and 
B, if there is a literal P1 in A which has a complementary 
literal P2 in B,  delete P1 and P2 from A and B and 
construct a disjunction of the remaining clauses. The clause 
so constructed is called the resolvent of A and B.” 
 For example, consider the following clauses 
 A :  P  V  Q  V  R 
 B :  ~P  V  Q  V  R 
 C :  ~Q  V  R 
Clauses A has the literal P which is complementary to ~P 
in B. Hence both of them are deleted and a resolvent( 
disjunction of A and B after the complementary clauses are 
removed) is generated. That resolvent has again a literal Q 
whose negation is available in C. Hence resolving those 
two, one has the final resolvent. 
A :  P  V  Q  V  R (given in the problem) 
B :  ~P  V  Q  V  R (given in the problem) 
D :  Q  V  R (resolvent of A and B) 
C :  ~Q  V  R (given in the problem) 
E :  R  (resolvent of C and D) 
 
It is possible to picturise the path of the problem using a 
deduction tree. 

 
 

14.  BASIC CONCEPT OF DEDUCTIVE DATABASES 
A deductive database may be defined as a triple DB = 
<C, P, I>. C is a finite set of nonlogical symbols 
(constant and predicate) that define a specific first-order 
language. It is assumed that C has at least one constant 
symbol and at least one predicate symbol. P consists of 
a finite set of axioms in the language and may contain 
metarules (that is, rules not expressible in the language) 
as well. I is afinite set of sentences in the language, the 
integrity constraints, that must be satisfied by the 
database. Updates to the database typically involve P 
only; the updated database must still satisfy I.  
 

15. RELATIONAL DATABASES 
Relational databases are a special case of deductive 
databases that do not allow deductive rules. In this 
case, P consists of ground atomic formulas only. These 
formulas represent database facts: tuples in relations (rows 
in database tables). Practical examples of relational 
databases are numerous and books on databases contain 
many examples. Some typical relations include 
Supplier, Part, Employee, and Department, with 
appropriate tuples, such as the 4-tuple <Jones H., 31, 
secretary, 19000> in the Employee relation, indicating an 
employee's name, age,title, and salary. No specific example 
will be given here. The following abstract example is used 
for illustration. 
Example 1 A relational database 
C contains the constants a 1 ,  a2, a3, a4, a5, a6, a7, a8, the 
unary predicate symbol R1, the binary predicate symbol 
R2, and the ternary predicate symbol R3. 
P contains 
R1(al )  
R1(a2) 
R2(al ,  a3)  
R2(a2, a4) 
R3(a1, a5, a7,) 

R3(a2, a3, a4) 
R3(a8,a l ,  a7)  
The tables in the corresponding relational database are R1 
with the elements al and a2, R2 with the pairs <a1, a3>and 
<a2, a4)', and R3 with the triples <a1, as, a7>, <a2, a3, 
a4)', and <a8, a l ,  a7) ' .  
Consider now the following queries: 
1.1 R1(x) (Find the x's for which 'the relation R1(x) is 
true.) 
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There are two answers: al and a2, since R1(a,) and 
R1(a2) are facts. 
1.2         R2(x1 ,  X2), R3(X1, X3, X2) 

There is one answer: <a2, a4, a3>, since R2(a2, 
a4) and R3(a2, a4, a3) are facts. 
1.3 R1(a3) 
The answer is No, since R1(a3) is not a fact. 
Relational databases are the simplest in the classification. 
Such theories are very important because of the 
prominence of commercially available relational database 
systems, and the development of many sophisticated 
concepts, both theoretical and applied, for relational 
databases(Ullman, 1988). While only facts can be 
represented directly in relational databases, Horn 
databasesallow for the representation of both facts and 
rules. This yields a significant advantage in 
expressivepower, as rules provide a concise way of 
expressing knowledge and are particularly useful in know-
ledge based systems. 

 
16. HORN DATABASES 

It is the combination of facts and rules.  
For Example, as in above example of facts & rules  A is an 
Horn Database. 
In a Horn database, P consists of formulas of the form B 
Al, ...,A. where B, Al, ..., A,,, are atoms (n may be 0). The 
non-atomic Horn formulas represent database rules. These 
rules constitute the deductive part of the database. Horn 
databases in the sense of this paper, that is, function-free, 
are also referred to as DATALOG programs (Ullman, 
1988). 
An example of a Horn database is the example involving 
family relationships. The predicate parent isgiven in the 
form of ground atoms,such as parent(mary,jim)•-. Horn 
definitions can then be given to define concepts such as 
grandparent and ancestor. 
grandparent(x,y) parent(x,z),parent(z,y)  
ancestor(x,y) F-- parent(x,y) 
ancestor(x,y) parent(x,z),ancestor(z,y). 
In words, a grandparent is a parent of a parent; an 
ancestor is either a parent or an ancestor of a parent. A 
definition such as the one for ancestor is called recursive 
because it appears both on the left and right hand side, that 
is, ancestor is defined partially in terms of itself. 
The following abstract example is an illustration of Horn 
databases. 
Example 2 A Horn database 
C contains the constants al, a2, a3, a4, a5, a6, a7, a8, the 
binary predicate symbols R1, R2, and the ternary predicate 
symbol R3 
P contains 
RI (al,a3) ← 
RI (a3,a4)← 
R1   (a4, a6) ← 
R2    (x, y) ←R1(x, y) 
R2(x, y)←RI(x, z), R2(z, y) 
R3(al ,  a2, a3)← 
R3(x, y, z)←R1(x, y), R2(y, z). 
Note that R2 has a recursive definition and that the contents 
of R3 are described in terms of a fact and rule. To make 

the example more meaningful, one may think of R1 as 
the parent predicate,R2 as the ancestor predicate, and R3 as 
a ternary predicate that is a special combination of parent 
and ancestor. 
Consider now the following queries. 
2.1 ←R2(x, y) 
There are six answers: <al, a3>, <a3, a4>, <a1, a4>, <a4, 
a6>, <a3, a6>, <a1, a6>

.2.2 f -  
2.2  ←R3(a1, x, y) 
There are three answers: <a2, a3>, <a3, a4>, <a3, a6>

. 
2.3 ←R2(a2, x), R1(x, y) 
There is no answer. 
 

17. DECLARATIVE, FIXPOINT, AND PROCEDURAL 

SEMANTICS 
Semantics deals with meaning, a relational database 
and a Horn database. For each database, several 
questions, along with answers, were given. The 
answers appear to be correct intuitively. In this section 
a more formal approach is taken to determine the 
meaning of a deductive database and the correctness 
of an answer to a query. Three standard semantics are 
discussed: declarative, fixpoint, and procedural. The 
main result of this section is that these differently 
defined semantics yield identical results for Horn 
databases. The theorems of this section come from van 
Emden and Kowalski (1976). 
17.1 Declarative semantics for Horn databases 
Declarative semantics is based on interpretations, as 
discussed in section 1. Within the framework of the 
basic axioms given in the previous section, the domain 
of every model must contain a distinct element for 
each constant symbol. But in logic programming in 
general, or if some of the basic axioms are not 
included, there may be many different domains for a 
theory. There is one domain thatisparticularly useful. 
The Herbrand universe for a set of formulas (axioms) is 
the set of all symbolsbuilt up using the constant 
symbols (and function symbols, if any). An 
interpretation whose domainis the Herbrand universe is 
calleda Herbrand interpretation. A 
Herbrandinterpretationfor a set of sentences which is 
also a model (that is, in which the sentences are all 
true) is called a Herbrandmodel. In logic programming 
the Herbrand universe may be infinite because of a 
function symbol or infinitely many constant symbols. 
Using the definition of a deductive database from 
section 2 including the basic axioms, all models are 
Herbrand models modulo renaming the elements of the 
domain. 
Another useful concept is the notion of a 
Herbrandbase, HBc: the set of all ground atomic 
formulas that can be formed using C. HBcmay also be 
thought of as the set of all possible facts about the 
database. For a deductive database, with a finite set of 
constants and predicates, the Herbrand base is finite. 
The Herbrand base is always a Herbrand model for a Horn 
database, because it satisfies the axioms of P including the 
fundamental axioms. However, the Herbrand base is 
usually not the intended model: it is too big. In general, we 
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do not intend all possible facts to be true. The idea is to 
look for small subsets of the Herbrand base that are 
Herbrand models, in order to make the least number of 
assumptions concerning what is true in the database. 
Theorem 2 will justify this restriction. 
For Horn databases there is a unique smallest Herbrand 
model, the minimal model, by the following theorem. 
Thorem 1 (van Emden and Kowalski, 1976). The 
intersection of every (non-empty) set of Herbrand models 
for a Horn database is a Herbrand model. 
Hence it suffices to take the intersection of all Herbrand 
models,MP, to obtain the intended meaning of the 
deductive database. The following theorem provides an 
important property of M p  
Theorem 2 (van Emden and Kowalski, 1976). For a Horn 
database, Mp = {A€HBc│P ╞ A}. 
This theorem states that the minimal model contains 
exactly the atoms logically implied by P. Now consider 
Example 1. For this case, 
MP = {RI(al), R1(a2), R2(a1,a3), R2(a2,a4),R3(a1,a5, a7), 
R3(a2, a5, a4), R3(a8, al, a7)}

. 
In general, for a relational database, Mprepresents exactly 
the rows in the tables. Now consider the queries 1.1-1.3. 
Assuming that Mpis the intended meaning of the database, 
the answers are constants whose substitutions make the 
queries true in M . For instance, considering 1.1, Mpk 
R1(al) and Mp R1(a2), but for any other constant c e C, it is 
not the case that Mpk R1(c). Hence the answers are al and 
as. 
Next, consider Example 2. In this case, 
Mp = {R1(al, a3), RI (a3, a4) R1(a4,a6), R2(al, a3), 
R2(a3, a4), R2(a4, a6), R2(a1,a4), R2(a1,a6), R2(a3, a6), 
R3(a1, a5, a3), R3(a1, a5, a4), R3(a1, a5, a6)). 
So, for 2.2, Mp╞R3(al, a2,a3) & R3(al, a5, a4) & R3(a1, a5, 
a6), but for any other constants c1, c2,it is not the case that 
Mp╞R3(al, c1, c2). That is how the three answers are 
obtained. 
 
17.2 Fixpoint semantics for Horn databases 
The second type of semantics is called fixpoint semantics. 
This type of semantics involves the building of the 
intended Herbrand model in a step-by-step process using 
Herbrand interpretations. The starting point is the empty 
set. At each step the rules of the database imply the addition 
of new atoms to the existing Herbrand interpretation. For 
instance, if A1, ...,An are in a Herbrand interpretation of P 
and A ←A 1, ..., An is a clause in P, then A should be 
added to the Herbrand interpretation to obtain a new 
Herbrand interpretation. When no more additions are 
needed, a fixpoint is reached. Such a fixpoint is a 
Herbrand model and the goal of fixpoint semantics is to 
compute the smallest fixpoint as the intended Herbrand 
model. 
The general concepts involve the mathematical theory of 
lattices. A lattice is a set with a partial ordering 
(essentially a less than or equal to: ≤) relation. For a lattice 
L and a set X ⊆ L, a € L is called anupper bound of X if x 
≤a for all x € X. Aleast upper bound a is anupper bound 
such thataa' for all upper bounds a'. If the least upper 
bound of X exists, it must be unique and is denoted 

bylub(X). The notions oflower bound and greatest lower 
bound is defined in a similar but opposite manner. A lattice 
L is called complete if lub(X) and glb(X) exist for every 
subset X of L. 
The set of all subsets of a set S is called thepower set of S 
and is written as 2s. For the applicationto database semantics 
the set S should be thought of asHBc, the Herbrand base. 
Then 2s is the set of all Herbrand interpretations. Under the 
subset relation 2sis known to be a complete lattice with 
lub(X) = u Si {Si € X} and gib(X) = ∩ Si {Si E X}. The 
top element is S and the bottom element is Ø(the empty 
set).-The crucial aspect of the theory involves properties of 
transformations between Herbrand interpretations; these 
are mappings from 2s to 2s in the present setup. A mapping 
T: 2s - 2s ismonotonic if for elements I, J of the lattice I⊆ 
J implies T(I)⊆ T(J), and continuous if T(lub(X)) = 
lub(T(X)) for every directed subset X of 2s. (A subset of L 
is directed if it contains an upper bound for every finite 
subset.) 
The powers of a monotonic mapping T are defined as 
follows: 
T ↑ 0 = Ø (The 0th power of T is the empty set.) 
T ↑T i + 1 = T(T ↑T i) (The next power of T is 
obtained by applying T to the previous power.) 
T ↑T ω= lub{T↑ T i ii<ω) (The Goth power of T is 
obtained by taking the lub of all finite powers.) 
An elementI €2sis calleda fixpoint of T if T(I) = I, that is, T 
does not change I. The least fixpoint of T is written as 
lfp(T), and is defined as the fixpoint which is a subset of 
every fixpoint. In general, lfp(T) need not exist. The 
following two results are well-known about lattices (see 
Lloyd, 1987)): 
(1) If T is monotonic, then lfp(T) exists. 
(2)If T is continuous, then lfp(T) = T Tω 
As mentioned earlier, the connection between monotonic 
mappings on a power set and deductivedatabases is 
obtained by letting S =HBc, the Herbrand base, in which 
case 2s is the set of Herbrandinterpretations. The mapping is 
usually referred to asTP, where P is the program, which, in 
this case, is the set of non basic axioms of P. 
For a Herbrand interpretation I, 
TP(I) = {A €HBcI A ← Al, ..., An is a ground 
instance of a clause in P and {A1, ..., A„} ⊆I}. 
Tp(I) contains all immediate consequences of the rules of P 
applied to I. The following theorem is a crucial result. 
Theorem 3 (van Emden and Kowalski, 1976). If the 
clauses of P are Horn then TP is continuous. 
Theorem 3 and Result (2) above imply that lfp(TP) =Tp↑ω. 
Fixpoint semantics picks lfp(Tp) as the meaning of P. The 
following computations yield TP↑ω for the two examples 
given in the previous section. 
For Example 1, 
TP↑0=Ø 
TP↑1 = TP(TP↑ 0) = {R1(al), R1(a2), R2(a1, a3), R2(a2, a4), 
R3(al,a5, a7),R3(a2, a3, a4), R3(a6, al, a7)} 
TP↑ n = T P↑ 1 for all n≥ 1 
TP↑ω=lub{TP↑ i I i <ω} = TP↑1. 
For Example 2,  
TP↑O=Ø 
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TP↑1 = TP(TP↑0) = {R1(a1, a3), R1(a3, a4), R1(a4, a6), R3(al, 
a2, a3)} 
TP↑2 = TP(TP↑ 1) = TP↑ 1 ᴜ{{R2(al,a3), R2(a3,a4), 
R2(a4,a6)} 
TP↑3 = TP(TP↑2) = TP↑ 2 ᴜ (R2(ai ,  a4), R2(a3, a6), R3(al, a3, 
a4), R3(a3, a4, a6)}  
TP↑ 4 = TP(TP↑3) =TP↑3 ᴜ {R2(al, a6), R3(al, a3, a6)} 
TP↑ n = T P↑4 for all n ≥  
TP↑ω= l u b { T P↑ i │ i < ω } = T P↑4. 
Note that in both cases,T p ↑ω=MP. In fact, the following 
theorem shows the equivalence of the declarative and 
fixpoint semantics. 
 

 
Figure 1 

 
Theorem 4 (van Emden and Kowalski, 1976). For a 
Horn database, TpT to = M .  
17.3 Procedural semantics for Horn databases 
The third type of semantics, procedural semantics, 
refers to a computational method for obtaining the 
meaning of a deductive database. For Horn databases 
SLD-resolution is used as procedural semantics. In an 
SLD-refutation, a Horn database P and a goal (clause 
of the form ←B1, ...,Bm) are given. An SLD-derivation 
starts with the goal clause as the top clause that is 
resolved in a linear manner with clauses in P (each 
clause of P is given new variables not previously used 
in the derivation). An atom in the present goal,B;, is 
selected, and a clause in P is chosen whose head 
canunify withB; by a substitution; the new goal is 
obtained by replacingB, with the body of the clauseafter 
applying the substitution required for the unification. An 
SLD-refutation is an SLD-derivation that ends with the 
empty clause: ← (also written as []). 
The success set of P, Succ(P), is defined as the set of 
all A e HBcsuch that P ∪{ ← A} has an SLD-refutation. 
In Example 1 it is easy to see that A can be in Succ(P) if 
and only if it is an axiom. Now consider Example 2 and 

take the atom R2(al, a6). Figure 1 is an SLD-resolution 
which shows that R2(al, a6) €Succ(P). 
The following theorem shows the connection between 
thedeclarative and procedural semantics. 
Theorem 5 (van Emden and Kowalski, 1976). For a 
Horn database (using SLD-refutation) Mp = Succ(P). 
Theorem 6 follows from Theorems 4 and 5. 
Theorem 6 (van Emden and Kowalski, 1976). For a 
deductive Horn database Mp= Tp↑ω= Succ(P). 
 
18. ILLUSTRATION  1 
Let the given theory be 
       A=  { Fly(x) ← Bird(x), 
          Bird (Tweety) ← 
          Bird(x) ← Penguin(x), 
         Give _egg(x)← Bird(x) 
          Penguin (Fred) ← 
          Fly(x) ←Penguin(x), } 
  Can Tweety fly? Write the success set. 
Solution: ---- 
From the given problem, we have 
~ Bird(x) ν Fly(x) 
~ Penguin(x) ν Bird(x) 
~ Bird(x) ν Gives_egg(x) 
~ Penguin(x) ν Fly(x) 
Bird(Tweety) 
Penguin(Fred) 
The ground atoms are 
{  Bird(Tweety) 
Fly(Tweety) 
Penguin(Tweety) 
Gives_egg(Tweety) 
~ Fly(Tweety) 
Penguin(Fred) 
Bird(Fred) 
Gives_egg(Fred) 
~ Fly(Fred)  
Fly(Fred) } 
Using resolution principle, we have   

 
Therefore  Tweety can Fly 
Success set :- { Bird(x), Fly(x), ~ Fly(x) } 
Note : Success Set is a subset of ground atom. Constant function- 
Tweety, Fred.  

19.ILLUSTRATION  2 
Let the given theory be 
       A=  { Fly(x) ← Bird(x), 
          Bird (Tweety) ← 
          Bird(x) ← Penguin(x), 
         Give _egg(x)← Bird(x) 
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          Penguin (Fred) ← 
          Fly(x) ←Penguin(x), } 
Find the belief set 
 using least fix point semantics, 
Using Declarative semantics 
Using procedural   semantics 
Solution: ---- 
19.1 Using least fix point semantics to generate belief set 
Now here basically two facts  
1 .Bird (Tweety) 
2.  Penguin (Fred) 
 And four types of rules:-- 
 1.   Bird(x) ←Penguin(x) 
 2.   Gives_egg(x)← Bird(x)               
3.    Fly(x) ← Penguin(x) 
4.     Fly(x) ← Bird(x) 
The powers of a monotonic mapping T are defined as 
follows: 
           Tp     0 = Ø 
Tp   ↑ 1 = Tp (Tp     0) = {Bird (Tweety), Penguin (Fred)} 
           Tp   ↑ 2   = Tp (Tp ↑   1) = (Tp ↑   1) U { 
Fly (Tweety), Give _egg (Tweety ) } 
           Tp   ↑ n   =  Tp   ↑ 2   for all n>= 2 
Tp   ↑ w = lub{ Tp   ↑ i | i  < w  } = Tp   ↑ 2   
Now the belief set is 
 {Bird (Tweety), Penguin (Fred)  Fly (Tweety), Give _egg 
(Tweety ) } 
 
19.2 Using Declarative semantics to generate belief set 
Declarative semantics is based on interpretation. Now in 
case of declarative semantics we use herbrand model for a 
horn database. But hebrand model is too big. In general all 
the possible facts are true. the idea is to look for small 
subsets of the herbrand base that are herbrand model in 
order to make the least no of assumption concerning what 
is true in the database  . 
 Now according to theorem -1(van emden & kowaski 
1976) the  Intersection of every set of hebrand model 
(denoted by MP) for a horn database is a hebrand model    
So MP obtain intended meaning of the deductive database . 
Now according to theorem -2 (van emden & kowaski 1976)  

MP ={ A € HBc | p╞ A } 
States that minimum model contains exactly the 
atoms logically implied by  P.    Where P are all the 
axioms. 
Now for the above example all the atoms are –  
[Bird (Tweety),  Penguin (Fred),Fly (Tweety),Give _egg 
(Tweety )  ] 
So according to this theorem and using declarative 
semantics we can conclude that belief states for this 
example is- 
     [ Bird (Tweety), Penguin (Fred)  Fly (Tweety), Give 
_egg (Tweety ) ] 
 
19.3 Using procedural   semantics to generate belief set 
Procedural   semantics refer to the method for obtaining 
meaning of a deductive database. Resolution principal is 
used in this process .For horn database SLD resolution is 
used as procedural semantics. In an SLD refutation a horn 
database P and a clause (of the form          M1, 

M2………….Mn) are given .An SLD refutation that ends 
with empty clause:           (may written as [ ])  The success 
set of P, Succ(p) is the set of all A €  HBc such that P U 
{        A}Has an SLD refutation 
Now according to theorem -5, 6 (van emden & kowaski 
1976) ---for a horn database (using SLD refutation) MP 
= Succ(p)  and for a deductive horn database  MP =Succ(p) 
=  Tp   ↑ w 
These rules ensure that after using procedural semantics 
procedure outcome belief set is same as declarative and fix 
point semantics for the same example. 

 
Now there is no need to apply SLD refutation to reach our 
desired goals  and also there is a two constant clause 
[ enguin (Fred) , Bird (Tweety), ] which have no use in any 
other SLD refutation to fulfill our purpose . so this two 
clause normally included as a constant term in  a belief set . 
So after apply SLD refutation or using procedural 
semantics we get new belief set which is - [ Bird (Tweety), 
Penguin (Fred)  Fly (Tweety), Give _egg (Tweety ) 
 So output belief set is -     [ Bird (Tweety), Penguin (Fred)  
Fly (Tweety), Give _egg (Tweety ) ] 
Theorem 7 (van Emden and Kowalski, 1976). For a Horn 
database the declarative, fixpoint, and procedural semantics 
provide identical answers to queries. 
i.e. For the Illustration 2 using the declarative, fixpoint, and 
procedural semantics provide identical answers to generate 
belief set and the belief set is -     [ Bird (Tweety), Penguin 
(Fred)  Fly (Tweety), Give _egg (Tweety ) ] 
 

20. CONCLUSION 
Thus for a Horn database the declarative, fixpoint, and 
procedural semantics provide identical answers to queries.  
i.e. For the Illustration 2 using the declarative, fixpoint, and 
procedural semantics provide identical answers to generate 
belief set. We can conclude that belief sets for this 
illustration 2 is  
 [ Bird (Tweety), Penguin (Fred)  Fly (Tweety), Give _egg 
(Tweety ) ]  
 

21.APPLICATION / USES 
My thesis can be applied on the following real life problem 

1. Railway maintain punctuality 
2. Airlines regularly operate their flight 
3. Letters are delivered in time 
4. Telephones work properly  and no crosstalk 
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5. In short, human life in itself is governed by 
principles of nonmonotonicity. 

The consistent belief set is shown to contain the same 
information as those obtained by the other well established 
techniques. Though, unlike those, the belief set constructed 
in this work is capable to handle the fuzziness of real 
world. I’ve also proposed a procedural semantics for the 
logic program containing propositions as well as 
dispositions and proved its soundness and completeness 
with respect to the unique consistent belief set. 
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